M259. Proposed by the Mayhem Staff.

The number n is formed by concatenating the strings of digits formed by the numbers 2^{2006} and 5^{2006} . How many digits does n have?

Solution by Arkady Alt, San Jose, CA, USA.

More generally, for any natural number m, let p and q be the number of digits in the strings of digits formed by 2^m and 5^m , respectively. Then $10^{p-1} < 2^m < 10^p$ and $10^{q-1} < 5^m < 10^q$. Therefore,

$$(10^{p-1})(10^{q-1}) < 2^m \cdot 5^m < 10^p \cdot 10^q;$$

that is,

$$10^{p+q-2} \ < \ 10^m \ < \ 10^{p+q} \, .$$

Thus, p+q-2 < m < p+q, which is equivalent to m=p+q-1, or p+q=m+1. We can conclude that a concatenation of 2^m and 5^m has m+1 digits. In particular, taking m=2006, we find that n has 2007 digits.

Also solved by HOUDA ANOUN, Bordeaux, France; ALPER CAY, Uzman Private School, Kayseri, Turkey; HASAN DENKER, Istanbul, Turkey; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; JEAN-DAVID HOULE, student, McGill University, Montreal, QC; D. KIPP JOHNSON, Beaverton, OR, USA; and KUNAL SINGH, student, Kendriya Vidyalaya School, Shillong, India.

M260. Proposed by Bruce Shawyer, Memorial University of Newfoundland, St. John's, NL.

Points A_0, A_1, \ldots, A_n lie on a line, in that order, spaced a uniform distance 2r apart. For $1 \leq k \leq n$, let Γ_k be the circle with $A_{k-1}A_k$ as diameter. The line through A_0 tangent to Γ_n intersects the circle Γ_k at the points B_k and C_k , for $1 \leq k \leq n-1$.

Determine the length of the line segment $B_k C_k$ for $1 \le k \le n-1$.

Solution by Richard I. Hess, Rancho Palos Verdes, CA, USA.

Let O_k be the centre of Γ_k . Let M_k be the mid-point of chord B_kC_k for $1 \le k \le n-1$, and let M_n be the point of tangency to Γ_n .

